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Historically both linear and nonlinear acoustics has been developed mainly on the basis 
of the hydrodynamic equations in an inertial reference frame. The rare exceptions are cer- 
tain problems in atmospheric hydrodynamics involving the generation and propagation of infra- 
sound on a sphere rotating with a constant angular velocity (see [i], for example) and a 
limited number of examples in the theory of inertial hydropulsators [2]. Movable objects 
of finite size, which can move with acceleration (including time-dependent acceleration) are 
common in technology and hence it is necessary to consider acoustic and hydrodynamic phe- 
nomena in coordinate systems rigidly fixed to these objects. 

i. We chose as a starting point the closed system of hydrodynamic equations for an 
Euler fluid (without sources) in a reference frame moving translationally with an accelera- 
tion a = a(t) relative to an inertial reference frame: 

p[v + (vv)v] = --V P - -  pa; 

+ div pv = O; 

+ (vv)~ = o; 

p = p(p ,  ~); 

Here v is the hydrodynamic velocity; 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

Td~ = dw--dP/p.  ( 1 . 5 )  

p i s  t h e  d e n s i t y  o f  t h e  medium; P i s  t h e  h y d r o d y n a m i c  
pressure; T is the absolute temperature; o is the entropy per unit mass; w is the specific 
enthalpy, which can be expressed through the internal energy per unit mass ~ (p, o) as w = 
~+P/p. The system of equations (I.i) through (1.5) must be supplemented by the appropriate 
initial and boundary conditions. 

It is to be noted that the equations of equilibrium thermodynamics strictly apply only 
to objects moving as a rigid whole in a straight line with constant velocity or rotating uni- 
formly with respect to an inertial reference frame [3]. However if we assume an equation of 
state of the type (1.4) can be used in the noninertial frame, then the principles of equi- 
librium thermodynamics can be used without any further restrictions [4]. 

A qualitative analysis of the basic equations (I.i) through (1.5) shows that in general 
the medium is stratified in a noninertial reference frame. This occurs because of the pres- 
ence of the term--pa on the right-hand side of (I.i), which characterizes the effect of the 
inertial force. However this stratification of the medium will only be stable when a is not 
a function of time. In this case, for a known functional dependence w s = ws(Ps, as) the 
basic system of equations (i.i) through (1.5) can be used to find the stratification law for 
the density (pressure) and entropy (see [5, 6], for example). Here the subscript s denotes 
the case v, = 0 for a = const. The problem will be significantly more complicated when a= a(t). 
We assume that the acceleration of the noninertial reference frame can be written in the form 

a(0 = <a> +a'~ (1.6) 

where a0= <a> is slowly varying in time and a' is rapidly varying. Here and below the symbol 
<...> denotes a time average of the form 

~+t o 
I 

J a(()dt' ,  ( 1 . 7 )  <a (t)> = ~ , 

where the interval of time used in the averaging t o is large in comparison with the char- 
acteristic time of the rapid process ~l and is small in comparison with the characteristic 
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time ~2 of the slow process. A similar decomposition has been used in the past to study the 
hydrodynamics of a plasma in a strong high-frequency field. If the "high-frequency" compo- 
nent of the acceleration is absent (a' =0) then one can speak of a stratified structure "float- 
ing" in time; the results of [5, 6] can be applied formally, where g (the gravitational ac- 
celeration) is replaced by a 0 and all of the thermodynamic variables will depend functionally 
on ~2, in addition to the usual variables. 

In the case when a 0 = const, or i/~ 2 ~ N (here and below we assume that a=ae= ), where 

{ [ I 0<p>+ <a> I}I/2 N= --<a>-<p--~ 0---7 <-~ is a frequency of the V~is~l~ type [i], c 2 = 8P/Sp is the square 

of the speed of sound, e= is a unit vector along the x axis, and the average is understood in 
the sense of (1.7), a wave component is developed on the background equilibrium (or quasi- 
equilibrium) thermodynamic state when a'~=0, and the dispersion relation contains (in the 
absence of average fluxes) two types of waves (acoustic and internal). An analogous situa- 
tion exists in atmospheric hydrodynamics [i]. 

2. The energetics of the hydrodynamic processes in a noninertial reference frame can be 
studied using the law of conservation of energy in the form of the Umov-Poynting theorem: 

)] [(4 )] ot p ~ z  + ~ §  + d i v  pv + w + x a  = p x a ( t )  ( 2. 1 ) 

[(E = p(v2/2 q - ~  + xa) i s  t h e  e n e r g y  d e n s i t y  in  a n o n i n e r t i a l  r e f e r e n c e  f rame [ 7 ] ,  a = Oa/Ot)]. 
E q u a t i o n  ( 2 . 1 )  can e a s i l y  be v e r i f i e d  by t h e  s t a n d a r d  method o f  d i r e c t  d i f f e r e n t i a t i o n  [8 ] .  

The e x p r e s s i o n  pxa(t) on t h e  r i g h t - h a n d  s i d e  o f  ( 2 . 1 )  c h a r a c t e r i z e s  t h e  power o f  t h e  i n e r t i a l  
force per unit volume. 

We consider only the acoustic wave field and neglect effects associated with the pres- 
ence of internal waves. Then we can transform from a two-parameter equation of state P = 
P(p, o) to a one-parameter equation of the form P = P(p). This approach will be valid if 
the frequency of the acoustic wave is larger than the frequency N (this includes the case 
<a> = 0, which is important in practice) or if the characteristic linear dimension s of the 
volume under consideration is much smaller than the scale of the inhomogeneities of the me- 
dium LN<c~>/<a>. For example in air <c2> ~ 9"10 # m2/sec 2. Taking <a> ~ 0.3g-3g, we have 
L ~ 3-30 km and the above condition is obviously satisfied for objects of practical interest. 

We consider conservation of energy of the acoustic wave field in the linear approxima- 
tion. To do this the variables appearing in (i.i) through (1.5) and (2.1) are written in the 
form v----<v>q-v'~ p = <p>q-p', P = <P>+P', a= <a>q-a', which separates the "fast" and "slow" 
parameters. Here we willconsider the special (but important in practice) case when <v> = 0r 

<a> = 0, <P>=P0 = oonst, <P> = P0 = const. 
p,  We expand t h e  l e f t -  and r i g h t - h a n d  s i d e s  o f  ( 2 . 1 )  in  t h e  s m a l l  p a r a m e t e r s  p',  v ' ,  , t o  

t e rms  of  t h e  second  o r d e r ,  o b t a i n i n g  

{ ]} o ~ 
O--f [Po (~o + xa')] + [(w o + xa')p'] + + __2Po p,2 + 

+ {div [p0v' (w 0 + xa')]} + {div [(P'v' + p'v'  (w 0 + xa'))]}= [poxa'] + [p'xa'] ( 2 . 2 )  

(c~ i s  t h e  mean s q u a r e  " b a c k g r o u n d "  speed  o f  s o u n d ) .  In  s i m p l i f y i n g  ( 2 . 2 )  i t  i s  n e c e s s a r y  

t o  u s e  t h e  i d e n t i t y  ~[p0(~0 + xa')]---poxa'. The d e r i v a t i v e  o f  t h e  l i n e a r  p a r t  o f  t h e  e n e r g y  

d e n s i t y  o f  t h e  medium 

_0 
ot [P' (w0 + xa')], (2.3) 

is not identically cancelled by the term [p'xa'] on the right-hand side of (2.2) because higher- 
order terms of the form [--(wo-~xa')div p'v'] appear when the differentiation is carried out. 

Hence the "source" term p'xa' must be attributed to both the linear and quadratic (in our ap- 
proximation) parts of the expansion of (2.2). Simplifying (2.2) with the above discussion 
taken into account, and integrating over the entire noninertial space, we can write 

! [ d 3 x  -t- dS. P' v$ = O, ( 2 . 4 )  
0t j 
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where v~ is the component of the acoustic velocity along the outward normal; S is the surface 
surrounding the volume of integration. In the derivation of (2.4) the Ostrogradski[-Gauss 
theorem was used and we made the realistic assumption that the total mass and momentum fluxes 
integrate to zero over all space. This assumption is essentially equivalent to an averaging 
of the terms with the dimensions of energy over the spatial coordinates and an averaging of 
the momentum flux with respect to time (see [9]). From the conservation of energy of the 
wave field (2.4) it follows that the "source" termpxd(t) in (2.1) cannot lead to excitation of 
sound in an infinite space. This is because the inertial force causes a coherent motion of 
the particles of the medium, i.e., motion of the medium as a whole. We note that the appli- 
cation of (2.4) to a noninertial reference frame has apparently not been discussed before. 

3. We now consider boundary-value problems. We linearize the system (i.i) through 
(1.5) in the acoustic approximation, assuming that P = P(p) and using (1.6). We then obtain 
the wave equation for the pressure perturbation P' = P - <P>: 

t ~P' 
-- = 0 .  ( 3 . 1 )  A P '  ~ ~  ~ 

c o 

I n  o r d e r  t o  be  d e f i n i t e ,  we s p e c i f y  t h e  g e o m e t r y  o f  t h e  p r o b l e m .  L e t  a p a r a l l e l e p i p e d  
w i t h  s i d e s  s  s  s and p e r f e c t l y  r i g i d  w a l l s  be a c c e l e r a t e d  in  t h e  x d i r e c t i o n ,  a l o n g  t h e  
s i d e  o f  l e n g t h  s  ( F i g .  1 ) .  H e r e  and be low f o r  s i m p l i c i t y  we w i l l  a s sume  t h a t  <a> = 0, a '  = 
b 0 s i n ~ 0 t  (b0 i s  t h e  a m p l i t u d e  o f  t h e  v a r i a b l e  p a r t  o f  t h e  a c c e l e r a t i o n  o f  t h e  moving  vo lume  
and ~0 i s  t h e  o s c i l l a t i o n  f r e q u e n c y ) .  The b o u n d a r y  c o n d i t i o n s  f o r  P '  i n  ( 3 . 1 )  on t h e  s i d e s  
o f  t h e  p a r a l l e l e p i p e d  a r e  unknown a p r i o r i .  To ove rcome  t h i s  d i f f i c u l t y ,  we t r a n s f o r m  t o  a 
wave equation for the acoustic velocity potential. 

xbo% i 0 ~  = _"iT- cos ~o t. ( 3 . 2 )  A~ c~ OP c o 

Equations (3.1) and ( 3 . 2 )  w i l l  be  s o l v e d  a s s u m i n g  a n a r r o w  v o l u m e ,  i . e . ,  ~2, s Z ~ (~ i s  
t h e  w a v e l e n g t h  o f  t h e  sound  w a v e ) .  I n  t h i s  a p p r o x i m a t i o n  P '  = P ' ( x ,  t ) ,  i . e . ,  t h e  p r e s s u r e  
p e r t u r b a t i o n  does  n o t  depend  on y and z .  T h i s  a p p r o x i m a t i o n  i s  w e l l - k n o w n  f r o m  t h e  t h e o r y  
of forced vibrations in narrow pipes [i0]. Also the frequency of the forced vibrations is 
equal to the frequency ~0 of the driving force. 

' O~ I = 0has the form The solution of (3.2) with the boundary conditions VxIX=0,q =~x==0j~, 

= x+ k --N~ ~cos ~o t, where k = 2~/X = ~0/c 0 is the wave number. Using the rela- 
COS -~ 

tion P' = --poa'x -- poO~/Ot we obtain the solution 

sin k (~!  -- z) 
P '  (x, t) = b~ sin coot ~ 

k kl  t cos 
2 

(3.3) 

b0P0. k l l  which  s a t i s f i e s j  t h e  wave e q u a t i o n  ( 3 . 1 )  w i t h  t h e  b o u n d a r y  c o n d i t i o n s  t9, ix--o = - - f f - ~ y  sin~0t, 

P '  Ix=f1 b~176 kl 1 = - -  ~ tan ~-  sin ~0 t. The p h y s i c a l  mean ing  o f  t h e s e  b o u n d a r y  c o n d i t i o n s  i s  o b v i o u s .  I n  

a t r a n s l a t i o n a l l y  moving  n o n i n e r t i a l  r e f e r e n c e  f r a m e  an i n e r t i a l  f o r c e  d i r e c t e d  o p p o s i t e  t o  

495 



the acceleration e' acts on a particle of the medium. Hence the pressure is a minimum on 
the end x = s in Fig. i and is a maximum on the opposite end (x = 0 in Fig. I). 

We consider the long-wavelength (low-frequency) approximation, when the parameter ks I 
is small. Expanding (3.3) in a series in ks I and keeping terms up to the third order, we 
obtain 

----- k (~ ~ g _ 

In this approximation the pressure perturbation P' can be decomposed into two parts: an 

)[ Y] boPok2 [ l 1 l~ x 
a c o u s t i c  p a r t  ~ and a p u l s a t i n g  p a r t  p: P '  ~ u q - p ,  u ~ - - f - - ( ~ - - x  4 sin~0 t, p 

b0p o T-x sin m0t. The pulsating part of the pressure perturbation represents an in-phase 

variation of pressure at every point in the volume (pseudosound). In the limit of an in- 
compressible medium (c o + =) we have P' + p. 

We estimate the components of the pressure in (3.4): 

Ipl~ I .-. IO (kll) -~. ( 3 . 5 )  

L e t  t h e  c h a r a c t e r i s t i c  l i n e a r  d i m e n s i o n  o f  t h e  moving volume be s ~ 1 m. Then t h e  p u l s a t i n g  
p a r t  o f  t h e  p r e s s u r e  w i l l  be dominan t  a t  f r e q u e n c i e s  m << 300 s ec  -1 ( f o r  a i r ) ,  ~ << 1500 s e c - *  
( f o r  w a t e r ) ,  i . e . ,  in  t h e  i n f r a s o n i c  r e g i o n .  Us ing  ( 3 . 5 ) ,  we e s t i m a t e  t h e  p r e s s u r e  i n s i d e  
t h e  body o f  a l i g h t  a u t o m o b i l e  f o r  t h e  mos t  t y p i c a l  f r e q u e n c y  i n t e r v a l  o f  m ~ 35-130 sec  - 1  
( s e e  [ 1 1 ] ) :  Ip /~ l  ~ 103-102 . For  example ,  f o r  ~z = l m ,  ~ = 1 0 0  s ec  -1 we o b t a i n  [P/~I  = 131 
atx=0. 

We return now to the case when a'(t) is an arbitrary function of time and <a> = 0 and we 
limit ourselves to the infrasonic range of frequencies, For the geometry of the problem con- 
sidered here (Fig. i) we can write 

p' _ ~ -~ p ___ ~ --h'p0 (x -- l l /2).  (3.6) 

We compare  t h e  componen ts  o f  t h e  p r e s s u r e  in  ( 3 . 6 ) .  P u t t i n g  ~ ~ 10-~-102  Pa,  (x - s  
2) ~ 1 m, P0 - 1 .3  kg/m 3 ( f o r  a i r ) ,  P0 ~ 103 kg/m3 ( f o r  w a t e r ) ,  we f i n d  t h e  r a n g e  o f  a c c e l e r -  
a t i o n s  a' f o r  which  IPl >> [~1. We o b t a i n  a' ~ 10-~-102  m / s e c  2 ( f o r  a i r ) ,  a'  ~ 10 -7 -10  -1 m/ 
s ec  2 ( f o r  w a t e r ) .  Hence f o r  t y p i c a l  v a l u e s  o f  t h e  v a r i a b l e  p a r t  o f  t h e  a c c e l e r a t i o n  o f  t h e  
moving o b j e c t  t h e  c o n t r i b u t i o n  o f  t h e  p u l s a t i n g  p a r t  o f  t h e  p r e s s u r e  can be d o m i n a n t .  In  t h e  
c a s e  o f  w a t e r  we have  IP/~I  ~ 10-107 even  f o r  a' = 1 m / s e c  2. 

i o2n P0 x 0~a ' I n  t h e  a p p r o x i m a t i o n  c o n s i d e r e d  h e r e  ( 3 . 1 )  can  be t r a n s f o r m e d  t o  A n - - - - - -  
~ o t  2 c~ o t  2 ' 

which  i s  a wave e q u a t i o n  f o r  t h e  a c o u s t i c  p r e s s u r e  in  t h e  i n f r a s o n i c  f r e q u e n c y  r e g i o n ,  

I n  t h e  more g e n e r a l  c a s e  t h e  p r e s s u r e  p e r t u r b a t i o n  P '  can  be decomposed i n t o  t h e  compo- 
n e n t s  p and ~ s i n c e  i n  t h e  l i m i t  P '  + p ( c o r r e s p o n d i n g  t o  an i n c o m p r e s s i b l e  medium) t h e  wave 
e q u a t i o n  ( 3 . 1 )  t r a n s f o r m s  i n t o  L a p l a c e ' s  e q u a t i o n  Ap = 0. 

F i n a l l y  we n o t e  t h a t  ou r  a n a l y s i s  can be u s e f u l  in  t h e  d e s i g n  o f  e x p e r i m e n t s  and in  
a n a l y z i n g  a c o u s t i c  measu remen t s  c a r r i e d  o u t  in  moving o b j e c t s .  

The a u t h o r  t h a n k s  V. A. K r a s i l ' n i k o v  f o r  i n t e r s t  i n  t h e  work.  
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DISCRETE CHARACTER OF THE FORMATION OF VORTICES IN A DEVELOPING 

CIRCULATORY FLOW 

V. S. Sadovskii and G. I. Taganov UDC 532.526.5 

The problem of a developing circulatory flow past an airfoil impulsively brought from 
rest to a constant velocity in an inviscid, incompressible fluid was quantitatively solved 
for the first time (in the linear approximation) in the work of Wagner [i] more than 60 years 
ago. This work was based on the Prandtl's assumption of the continuous vortex shedding from 
the sharp trailing edge of an airfoil. The more general case of the unsteady problem of 
flow past a moving airfoil associated with the occurrence of flutter attracted, more than 50 
years ago, the attention of Soviet scientists M. V. Keldysh, M. A. Lavrent'ev, A. I. Nekrasov, 
and L. I. Sedov, who developed the existing standard linear theory of the unsteady motion of 
an airfoil. The difficulties in the nonlinear problem, and thefr early concepts, are still 
valid today for the exact description of the flow and were elaborated by Sedov [2] 50 years 
ago. 

Because of the difficulties in the exact description of the flow, we can replace the 
exact description of the vortex shedding from the trailing edge by a model. The problem of 
the developing circulatory flow past an airfoil impulsively brought from rest to a constant 
velocity was solved in [3, 4]. The flow past a flat plate with an angle of incidence ~ = 90 ~ 
was examined by means of a dipole model under the assumption that the flow does not separate 
near the leading edge. It is emphasized that the dipole field represents not only the limit- 
ing case of a source-sink system but also the limiting case (in the direction perpendicular 
to the dipole axis) of a system of two vortices with velocity circulation of opposite signs. 
Therefore, the dipole model applied to describe flow containing domains with closed stream- 
lines can be viewed as a degenerate classic FSppl's model with vortices of infinite circula- 
tion located on the surface of a body. 

The above works show that, after approaching some critical instant of time t,, the 
streamline which passes through the trailing edge no longer encloses the domain where tra- 
jectories of fluid elements form closed lines, and it was assumed that for t > t, this domain 
separates from the plate. Also, it was assumed that the new domain with closed trajectories 
of fluid elements was formed on the trailing edge after elapse of a period of time. The new 
domain grows until it reaches again a critical size at t = t**, and so on. 

Thus, the process of development of circulatory flow past an airfoil in an inviscid 
fluid characterized by vortex shedding from the trailing edge is not continuous but consists 
of subsequent formations and separations of domains with closed trajectories of fluid elements 
formed by discrete elements of the vortex sheet. 

The supplementary information on the dipole model for t = t, presented below helps to 
estimate the circulation of the first vortex separated from the trailing edge of the plate 
as well as to examine the pattern of the flow for t > t, after bifurcation of a dipole. 

The instantaneous patterns of flow for t < t, in the system of coordinates associated 
with the plate are shown in Fig. 1 for two descriptions of the flow. For an exact descrip- 
tion the domain with closed trajectories of fluid elements is formed by the curled vortex 
sheet separating from the trailing edge of the plate (Fig. ~a). For the model description 
the analogous domain is formed by a dipole located at point D on the trailing edge of the 
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